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Expression quantitative
trait loci

(eQTLs). Genomic regions
that carry one or more DNA
sequence variants that
influence the expression level
(typically mRNA abundance)
of a given gene.

Recombinant offspring
Offspring of sexually
reproducing organisms that
carry a random combination
of the alleles that they have
inherited from their parents.
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The role of regulatory variation in
complex traits and disease

Propelled by technological advances, we will soon have
essentially complete catalogues of all but the rarest genetic
variants in humans and several other species. Individuals
in most species differ from each other by thousands to
millions of DNA sequence variants. Some of this varia-
tion contributes to observable phenotypic differences in
traits ranging from morphology, physiology and behav-
iour to predisposition to many human diseases. While
the identification of variants that affect phenotypes is
rapidly progressing, the fundamental challenge now is to
understand how these variants exert their effects.

An important class of variants, termed expression
quantitative trait loci (eQTLs), influence the expression
level of genes (BOX 1). The genetics of expression varia-
tion of single genes has been studied since at least 1962
(REF. 1). Genome-wide eQTL mapping was proposed in
2001 (REF. 2) and first carried out in its modern form
at about the same time in a cross between two yeast
strains’. Brem et al.> used microarrays to measure varia-
tion in mRNA abundance for all expressed genes among
recombinant offspring of these two parent strains. Relating
this variation to the alleles that each offspring inherited
from either parent allowed the identification of regions
in the genome that harbour sequence variants that influ-
ence gene expression. The now-ubiquitous term eQTL
for such regions was coined shortly thereafter?, although
the related term protein quantity loci (pQLSs; now more
commonly known as protein QTLs (pQTLs)) was used
in an examination of the genetics of protein levels for a
limited number of genes in 1994 (REF. 5). Since then, there
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Abstract | We are in a phase of unprecedented progress in identifying genetic loci that
cause variation in traits ranging from growth and fitness in simple organisms to disease in
humans. However, a mechanistic understanding of how these loci influence traits is
lacking for the majority of loci. Studies of the genetics of gene expression have emerged
as a key tool for linking DNA sequence variation to phenotypes. Here, we review recent
insights into the molecular nature of regulatory variants and describe their influence on
the transcriptome and the proteome. We discuss conceptual advances from studies in
model organisms and present examples of complete chains of causality that link
individual polymorphisms to changes in gene expression, which in turn result in
physiological changes and, ultimately, disease risk.

has been tremendous progress in the study of regula-
tory variation. Maps of eQTLs are being built in increas-
ingly large-scale studies in humans®'? (see REF. 13 for
earlier landmark studies) (TABLE 1), rodents®!*-2, flies?"%2,
plants*»-*, worms®"** and other species. The early
observations in yeast of local and distant eQTLs, eQTL
hot spots, a complex genetic basis of expression traits,
and connections between expression and organismal
phenotypes®* (see below) have since been found to hold
in other species.

Beyond ever larger catalogues of eQTLs, our under-
standing is now being expanded in two directions.
Although eQTLs were typically identified as loci’ — that
is, statistical associations between regions of the genome
and the expression of genes — the identity of the pre-
cise causal variants and their molecular mode of action
are coming into increasingly sharper view. Additionally,
there is a growing understanding of the consequences of
variation in gene expression levels for organisms. This
second aspect is especially important because a crucial
rationale for large eQTL studies is that they can help to
prioritize likely causal variants among the multiple poly-
morphisms within the regions identified by genome-
wide association studies (GWASs), as well as to reveal
the precise biological mechanisms through which DNA
differences influence organismal traits. For example, the
majority of loci identified in human GWASs are found in
non-coding regions that are not in linkage disequilibrium
with coding exons and must therefore reflect the effects
of regulatory variation®.
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Protein QTLs

(pQTLs). Genomic regions
that carry one or more DNA
sequence variants that
influence the protein
abundance of a given gene.

eQTL hot spots

Regions of the genome that
contain more expression
quantitative trait loci (eQTLs)
than expected by chance.

Previous reviews have covered the various types of
eQTLs and the ways in which they can be identified and
fine-mapped'>*¥, the rich variety of molecular traits
that can be assayed along the cascade of gene expression
regulation®®* and the ways to integrate these molecu-
lar traits in a systems genetics perspective®. Here, we
review new insights into the molecular basis of eQTLs
and the genetics of mRNA versus protein levels. We then
present recent discoveries into the causal links between
eQTLs and higher-order organismal phenotypes, such as
physiology and disease. We describe recent experimen-
tal insights into eQTL causality (many of which were

derived from model organisms) and close by presenting
an overview of the emerging evidence for eQTL causality
in human disease.

What are eQTLs?

eQTLs contain sequence variants that affect the expres-
sion of a gene. They are similar to other QTLs that can
influence any given trait of interest (for example, height,
growth rate and disease risk) except that the trait under
study is gene expression. eQTLs are identified by meas-
uring gene expression in panels of genetically different,
genotyped individuals'?*® (BOXES 1,2). These panels can be

Box 1| A beginner’s guide to eQTL mapping

Expression quantitative trait loci (eQTLs) are regions of the genome
containing DNA sequence variants that influence the expression level
of one or more genes. They are identified by studying a population of
genetically different individuals (FIC. 1). These individuals can be members
of an outbred population (for example, human individuals) or can be bred
using experimental crosses (for example, from a cross between two
genetically different yeast strains or a panel of mouse strains). The
individuals in the population differ from each other at many sequence
variants, from tens of thousands in yeast crosses to millions in human -24
populations. Most of these variants do not have any consequences on gene
expression (or on any other trait). 15—
To identify the comparatively few variants that influence gene expression,
two types of data are collected from each individual. First, each individual

Expression level

Expression level

needs to be genotyped. If the sequence variants in the population are known,
genotyping can be done by targeted assays of each variant in each individual
(for example, using single-nucleotide polymorphism (SNP) microarrays).
Otherwise, current technologies now allow the genome of each individual to
be fully sequenced so that all variants are discovered. Second, the expression
of each gene in the genome is measured in each individual using either
expression microarrays or RNA sequencing. eQTLs are then identified by
comparing the genotypes with the expression levels using association (in
outbred populations) or linkage analysis (in pedigrees or designed crosses).

To test whether a given sequence variant has an effect on the expression of
a given gene, a statistical test is performed (see the figure, part a). Individuals
are grouped according to the allele they carry. If the gene has a significantly
higher expression level in one group than in the other group, we can
conclude that the variant (or another variant in linkage disequilibrium)
influences the expression of this gene. The test is repeated at every DNA
variant in the genome, resulting in a genome scan for eQTLs for this gene
(see the figure, part a).

The figure (part @) shows a genome scan for mRNA levels of the yeast TPO1
gene in a cross between two yeast strains. The logarithm of the odds (LOD)
score is a measure of the strength of the statistical association between
mRNA level and genotype. Light blue shapes show the distribution of
expression levels, and blue dots are expression levels for individual
segregants. The thick black bars show the central 50% of the data, and the
white dot indicates the median. When mRNA levels are significantly higher
in individuals that have inherited one allele than those that have inherited
the other allele, the LOD score is high and the region is called an eQTL. An
example is shown on the left end of chromosome 15 where the LOD score
exceeds the genome-wide threshold (indicated by the dashed red line).
When there is no difference in mRNA levels between genotype groups, the
LOD score is low (see the example region on chromosome 4). The genome
scan is repeated for the expression of every gene in the genome (see the
figure, part b). Shown here are the LOD profiles for 200 randomly selected
genes. The genes are sorted according to their genomic position. Local
eQTLs form a diagonal, and eQTL hot spots are visible as vertical (for
example, on chromosomes 14 and 15).

The figure was generated using data from REF. 50.
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Organismal phenotypes
Traits that are detectable at the
level of the whole organism,
such as shape, size, colour,
growth rate or the risk of
developing a certain disease.

Linkage disequilibrium

The phenomenon whereby
specific allele combinations
occur more frequently than
expected by chance, typically
because they are physically
close to each other on the
same chromosome.

QTLs

Genomic regions that carry
one or several DNA sequence
variants which influence a
continuously variable trait

of interest.

Table 1| A sampling of recent human eQTL data sets

Year  Cell type or tissue
studied
Blood
2014  Whole blood
Whole blood
2013  Whole blood
2012 Whole blood and LCLs
2011 Whole blood
Bone
2011  Osteoblasts
Brain
2014 10 brainregions
2012  Cortex and cerebellum
2011  Developmental time series
2010 4 brainregions
Heart
2014  Heart
Immune system
2014  LCLs
Dendritic cells
Lymphocytes and
monocytes
Tcells
Stimulated monocytes
2013 LCLs
2012 Monocytes and B cells
2010  Monocytes
2009  Fibroblasts, LCLs and T cells
2007  Lymphocytes
Liver
2011  Livertissue
2008  Livertissue
Lung
2012 Lungtissue
Multiple tissue types
2012 Adipose tissue
Skin tissue
LCLs
2010  Livertissue
Subcutaneous fat
Omental fat

Design

Twins
Unrelated
Unrelated

Families

Unrelated

Unrelated

Unrelated
Unrelated

Unrelated
Unrelated

Unrelated

Unrelated
Unrelated
Unrelated

Unrelated
Unrelated

Unrelated
Unrelated

Unrelated
Unrelated

Extended
families

Unrelated

Unrelated

Unrelated

Twins

Unrelated

Number of
individuals

2,752*
922
53115

862
1,469

113

134

400

269
150

129

869
5341
461

348"

432

462
283

1,490
75
1,240

266

427

1,111

856

960

433
520

Disease or trait being compared to*

Many
NA

Type 1 diabetes and cholesterol
metabolism

NA
Blood traits

Asthma

Parkinson’s disease and other brain
disorders

Parkinson’s disease and other brain
disorders

NA
NA

Cardiac traits

Type 1 diabetes and ulcerative colitis
Autoimmune and infectious disease

Autoimmune disease and
neurodegenerative diseases

Autoimmune disease

Immunity-related (for example, bacterial
infection, inflammation, multiple
sclerosis and Crohn’s disease)

Many

Immunity-related (for example,
ulcerative colitis and systemic lupus
erythematosus)

Many
NA
HDL-C

Diabetes, drug response, lipid levels and
prostate cancer

Type 1 diabetes, coronary artery disease
and plasma LDL-C

Asthma

Triglyceride levels and birth weight
Melanoma
Immunity-related

Plasma LDL-C and myocardial infarction

Refs

63
47
70l

216
71

217

218

219

220
221

222

72

74
73

150
67

88
66

148

49

223

224

225

62

100
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Homologous

Pertaining to the two copies of
the same chromosome that
were inherited from the mother
and the father in diploid
organisms (such as humans).

RNA sequencing

A method to determine the
sequence of RNA molecules

in a biological sample. By
counting the RNA molecules
that were transcribed from
each gene, RNA sequencing
can be used to quantify mRNA
expression levels.

Genetic distance

A measure of how often

two sites in a genome are
separated during meiosis.
Genetic distance is correlated
with physical distance but can
differ quantitatively because of
variation in recombination rate
along a chromosome.

Table 1 (cont.) | A sampling of recent human eQTL data sets

Year  Cell type or tissue Design Number of Disease or trait being compared to*  Refs
studied individuals

Tumours

2014  Colorectal tumours and Unrelated 103 Colorectal cancer 226
normal tissue
5 tumour types” Unrelated 145-391 5 types of cancer 227

2013  Breastcancer Unrelated 219 Breast cancer 228

eQTL, expression quantitative trait loci; GWAS, genome-wide association study; HDL-C, high-density lipoprotein cholesterol; LCL,
immortalized lymphoblastoid cell line; LDL-C, low-density lipoprotein cholesterol; NA, none reported in eQTL paper, although
overlap is often reported in follow-up analyses in the context of additional GWASs. The table shows recent studies that presented
new eQTL data sets in humans. Unless otherwise indicated, meta-analyses, computational reanalyses or GWASs of diseases that
compare to published eQTL data sets are not shown. The table is not meant to be exhaustive but to provide an overview of the
breadth and scale of the field. *Selections of traits from those highlighted in the given paper are shown; eQTLs are usually
compared to many more traits. *An additional 1,895 unrelated individuals were studied in a replication data set. SAn additional
2,775 unrelated individuals were studied in a replication data set. IThe largest eQTL meta-analysis so far. "eQTL mapping was
carried out on the basis of measurements of a targeted subset of genes. “Based on publicly available data.

designed experimental crosses, existing pedigrees or fam-
ilies’ or unrelated individuals from natural populations
— the most common eQTL study design in humans®"
(FIG. 1A). eQTLs are often classified according to the rela-
tive locations of the eQTLs and the gene or genes that
they influence, and according to the type of mechanism
through which they affect expression (FIC. 1C).

Local eQTLs. An early observation was that some
eQTLs are located near the genes they influence, whereas
others are located elsewhere in the genome’. The for-
mer have been called ‘local’ eQTLs". Local eQTLs can
influence gene expression by two different mechanisms.
Most obviously, they can act in cis and affect expression
in an allele-specific manner. By definition, each allele of
such eQTLs affects only the expression of the copy
of the gene that is located on the same physical chromo-
some with it and not the expression of the copy on the
homologous chromosome. Therefore, cis-eQTLs can be
detected in heterozygous individuals by quantifying the
relative expression levels of the two alleles, for example,
by counting the number of times each allele is observed
in RNA sequencing data. If there is an imbalance in the
expression levels of the two alleles, then the gene is
affected by a cis-eQTL* .

Local eQTLs do not always act in cis'>*"** but can
also act in trans. Trans-eQTLs are due to polymorphisms
that alter the structure, function or expression of a dif-
fusible factor (FIC. 1C). The resulting differential activity
or abundance of this factor alters expression levels of the
genes that are influenced by the trans-eQTL. As the dif-
fusible intermediate is equally available to both alleles of
a target gene, trans-eQTLs do not lead to allele-biased
expression in heterozygous individuals. Furthermore,
trans-eQTLs can be located anywhere in the genome
relative to the genes they regulate. If they happen to be
close to the given gene, then they will appear as local but
not cis-acting eQTLs. An extreme example of a trans-
acting local eQTL is a single amino acid substitution in
the yeast AMNI gene, which results in differential regu-
lation of AMNI itself through a regulatory feedback loop
that involves several additional factors*'. Although it

has become common to use the terms ‘local eQTLs and
‘cis-eQTLs’ interchangeably in human eQTL studies, we
advocate using the appropriate precise terminology to
clearly delineate relative position from mode of action.

Local eQTLs are abundant in all species studied so
far. In humans, nearly 80% of expressed genes in whole
blood had alocal eQTL in a recent survey of nearly 1,000
individuals®. In yeast, ~25% of genes had a local eQTL
in a comparison of two different isolates*, and many
more local regulatory variants are expected to exist in
additional yeast strains that have not been studied so
far. Indeed, a population genetic extrapolation predicted
that most or all yeast genes will have local eQTLs across
the global yeast diversity*.

Distant eQTLs. Distant eQTLs are defined as loci that
are located further away from the genes they influence.
The precise distance required for an eQTL to be distant
is arbitrary and can be defined in physical or genetic
distance; consequently, it differs between studies. For
example, such a distance can range from 10kb in yeast?
to 2Mb in humans’; some studies even require distant
eQTLs to be located on different chromosomes from
the genes they influence®. Distant eQTLs usually act
in trans. The number of distant eQTLs that have been
identified so far is much more variable between spe-
cies than that of local eQTLs. In yeast>***!, the nema-
tode Caenorhabditis elegans®, the plant Arabidopsis
thaliana®? and rodents'****, there are multiple strong
trans-acting-eQTL hot spots that can each affect the
expression of up to hundreds of genes. In yeast, many
of the expression effects at some of these hot spots are
caused by variation in single genes®**. Other yeast hot
spots may contain multiple causal genes®>*® — a finding
also seen in mouse mapping panels'®”’. Studies of model
organism panels also routinely identify large numbers of
distant eQTLs that do not fall into hot spots®"*.

In contrast to these findings in model organisms,
distant eQTLs have been harder to find in human pop-
ulation-based samples, and family-based analyses have
provided mixed support for distant-eQTL hot spots®*®.
The apparent difference in the prevalence of distant
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Box 2 | Controlling and using non-genetic sources of expression variation

Large studies of gene expression, such as studies of expression quantitative trait loci
(eQTLs), willinvariably be carried out over a long time span and sometimes in multiple
laboratories!®. Even with the most standardized techniques, the resulting data sets
usually contain some degree of systematic variation that is not the focus of the
experiment. This can be technical (for example, batch effects due to slightly
different experimental conditions) or biological (for example, different age or sex of
the individuals in the study)?®. This extra variation can obscure true signals or, worse,
generate false positives if it is confounded with variables of interest??*2°,

There are many strategies to control systematic variation. When they are known (for
example, sex and age, or processing date), the sources of this variation can be explicitly
taken into account during analysis. Alternatively, the expression data can be used to
identify principal components, surrogate variables?*? or hidden factors in a Bayesian
analysis?®. These capture large systematic effects that can then be removed before the
remaining analyses, sometimes markedly improving eQTL detection in the ‘de-noised’
data’®. However, strong real genetic effects (such as trans-acting eQTL hot spots) can

inadvertently be removed by these approaches?®. One way to avoid this is to jointly
estimate confounding factors and genetic signals?®. There are many related
approaches to account for non-genetic sources of variation in eQTL mapping?®®-2'.

In addition to treating non-genetic variation as noise during eQTL mapping, this
variation can sometimes be used to extract useful information. For instance, the
gene expression data can be combined with external information (for example, on
transcription factor (TF) binding motifs) to infer unobserved cellular states such as
the activities of TFs?'22!3 or of post-transcriptional regulators?™. In turn, these inferred
activities can be used to better understand the biological modes of action of the

observed eQTL.

In another example, Francesconi and Lehner?®® reanalysed an eQTL data set in
Caenorhabditis elegans®'. The worms in the panel had been synchronized to the same
developmental stage but still varied from each other within a range of several hours.
The authors used expression data from a developmental time series to assign each
strain to its precise ‘developmental age’ and then used this ‘age’ as a covariate in eQTL
mapping. They found not only many more eQTLs but also QTLs that affected the
dynamics of expression changes during development?*.

Linkage blocks

Continuous haplotypes that
are not broken up in the
population under study such
that sequence variants within
them all show the same
patterns of association with
a certain trait of interest.

Haplotypes

Stretches of DNA that carry
certain combinations of alleles
at two or more DNA variants.

Variance

A statistical measure of the
variability of a traitin a
population.

Heritability

The fraction of variance in
a trait that is due to genetic
differences among

the individuals in a population.

eQTLs between species is most likely due to the fact
that the detection of distant eQTLs is more difficult in
human populations than in experimental crosses. In
crosses, few alleles segregate at high frequencies at each
locus, and linkage blocks are relatively large, resulting in
high statistical power at any position in the genome.
In human population samples, there are multiple haplo-
types at most positions in the genome, multiple variants
per region (most of which are at low frequencies) and
shorter linkage blocks. Together, these features necessi-
tate many more association tests. The strict significance
thresholds required to correct for this large number
of tests result in low statistical power, making distant
eQTLs harder to find. Indeed, to reduce the multiple-
testing burden, most human eQTL searches have been
restricted to local variation around each gene, such that
distant eQTLs cannot be discovered by design. Distant
eQTLs also have smaller effect sizes® and seem to be
more tissue-specific than local eQTLs**, which further
complicates their detection.

Several recent studies estimated the relative impor-
tance of local and distant genetic variation on human
mRNA abundance variation® . This can be achieved
even without knowing the identity of individual eQTLs.
Genome-wide genotyping data can be used to partition
the variance in a trait into various sources such as genetic
or environmental variation®*. The genetic component

REVIEWS

(that is, the ‘heritability’) of the gene expression variance
can be further partitioned into the contribution of the
genomic region centred on the gene itself and the con-
tribution of the remainder of the genome. This distant
contribution accounts for the majority (60-75%) of the
heritability in human gene expression®-%. Thus, dis-
tant eQTLs clearly exist in humans just as they do in
model organisms. Indeed, as sample sizes increase
in human studies, more distant eQTLs are being discov-
ered®>¢>%¢7 In both yeast™ and humans®7, the effects
of distant eQTLs can change considerably in different
environments. Based on the evidence so far, the trans-
acting component in human populations seems to be
more dispersed across many loci across the genome than
the major hot spots seen in model organisms. It remains
unclear whether this is due to the comparatively low
power in human studies, a result of the fact that more
variation is examined in human population studies than
in crosses in model organisms, or a true reflection of
biological differences.

The molecular chain of causality

The molecular nature of cis-eQTLs. Regulatory varia-
tion can affect organisms by interfering with any of the
steps along the gene expression cascade from DNA to
protein (FIC. 1B). For many years, technology largely lim-
ited eQTL studies to measures of mRNA abundance.
Now, new technologies fuelled by the advances in mas-
sively parallel sequencing enable detailed examination
of how sequence variation influences the individual
steps of gene expression. The first wave of these studies
examined transcription factor (TF) binding” 7, chro-
matin accessibility®*, DNA methylation® %, alternative
splicing**#7-%, small RNAs*?!, large intergenic non-
coding RNAs (lincRNAs)*>%, RNA editing® and mRNA
degradation®. It is now clear that all of these types of
transcripts and processes can be affected by regulatory
variants®. There is emerging evidence that much of
the variation at multiple genomic levels is orchestrated
through cis-acting sequence differences that affect TF
binding.

A major advance in understanding the nature of the
causal DNA variants that underlie eQTLs is the growing
availability of whole-genome sequences®*. All sequence
variants are essentially known in these studies, so that the
causal eQTL variants themselves (rather than a linked
single-nucleotide polymorphism (SNP) on a genotyp-
ing array) will often show the highest association with
gene expression. For example, a recent eQTL mapping
of 462 fully sequenced human individuals found that
short insertions and deletions (indels) are more likely
to result in local eQTLs than SNPs®*. Causal eQTL vari-
ants are further enriched in DNase I-hypersensitive sites,
in regions annotated® as active promoters and strong
enhancers, and in TF binding sites®.

Investigation of allele-specific histone modifica-
tions, TF binding and mRNA levels in human parent-
offspring trios has provided additional support for the
importance of variation in TF binding®*’. Sequence var-
iants that are located in TF binding sites are correlated
not only with variation in TF binding itself but also with
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< Figure 1| Designs for genetic mapping of variation in gene expression and other
molecular traits. Molecular variation is mapped in genetically variable populations.
Aa | These populations can be generated through designed crosses in model
organisms. For example, the genetic backgrounds of a set of yeast strains are
reshuffled by mating followed by meiosis, resulting in a set of recombinant offspring.
Ab | Alternatively, outbred populations can be used that carry genetic variation which
was spread and recombined by historical genetic processes (illustrated by the genetic
history of a hypothetical region of the genome). This is the most popular design for
expression quantitative trait locus (eQTL) mapping in humans. Pedigrees or families of
related individuals can also be used (not shown). B | The molecular quantity of interest
is measured in each individual in the study panel. The figure illustrates the results for
two individuals that differ in the expression of a certain gene. To map the loci involved
(marked by the star), this molecular variation is compared to genetic variation among
the individuals (BOX 1). Many of the steps along the gene expression cascade can be
studied in this way, including DNA methylation (Me), histone modifications,
transcription factor (TF) binding, active transcription, mRNA levels (resulting in
eQTLs), translation and protein levels (resulting in protein QTLs (pQTLs)). In the
example, the altered protein level due to the genetic polymorphism influences disease
risk, an organismal trait. C | eQTLs can be classified according to their location (local or
distant to the gene they influence) and according to their mode of action (cis or trans).
MRCA, most recent common ancestor.

differential histone modifications, mRNA levels and
DNA methylation®. A parsimonious explanation for
these observations is that differential TF binding is the
primary molecular change. In turn, the TFs then direct
the changes in histone modifications, DNA methylation
and mRNA expression.

These global analyses complement multiple exam-
ples of individual human cis-eQTLs that are caused
by sequence differences in TF binding sites*>7*100-103,
However, only 25-35% of genetically variable TF bind-
ing events are associated with a known sequence variant
within the corresponding TF binding core motif 77,
Some of the remaining cases may be due to missed
motif variants. Alternatively, causal sequence variants
outside core motifs may influence TF binding, perhaps
by altering the local shape of the DNA or by influenc-
ing the binding of other TFs that form complexes with
the assayed TFE. An interesting variation on this theme
is a 2-bp deletion in a promoter that segregates among
yeast strains and causes variation in the expression of
the ERG28 gene'™. The deletion allele does not disrupt
a TF binding motif but instead moves two neighbouring
TF binding sites closer together, resulting in reduced
binding by both factors. Experimental dissection of
additional cis-eQTLs will reveal the full spectrum
of their molecular causes.

The molecular nature of trans-eQTLs. Trans-eQTLs can
be due to a diverse set of molecular causes. They can be
coding variants in regulatory genes or local eQTLs of
such genes. Work in yeast showed that the regulatory
genes that act as trans factors themselves have diverse
functions. Proteins encoded by trans-acting yeast
eQTLs are not enriched for TFs*. Instead, the func-
tions they encode range from RNA-binding proteins
(such as MKT1)*1%51% to members of signalling cas-
cades (such as IRA2 (REF. 50) and GPAI (REF. 33)) and
modifiers of nucleosome composition (such as swc5 in
Schizosaccharomyces pombe™).

REVIEWS

Recent work in humans is beginning to reveal simi-
lar molecular diversity among trans-eQTLs% 7%, For
example, IRF7 (which encodes interferon regulatory
factor 7, a transcription factor) is influenced by a local
eQTL in activated dendritic cells, a type of immune cell.
The same eQTL SNP is associated with the expression of
a set of genes in trans™. Experimental overexpression
of IRF7 influences the same set of genes, demonstrat-
ing that the altered expression of IRF7 caused by the
local eQTL is responsible for driving further expression
changes™. Adding another level of complexity, in human
monocytes IRF7 is influenced by another trans-acting
locus that maps to a local eQTL in EBI2 (also known as
GPR183, which encodes a G protein-coupled receptor)®.
Other trans-eQTLs in humans include an amino acid
substitution in a cytochrome P450 enzyme® that reduces
the half-life of the protein'”, a local eQTL for the LYZ
gene encoding the secreted enzyme lysozyme®¥, and
multiple associations within the highly variable human
major histocompatibility complex (MHC) region®®*".
When more human trans-eQTLs have been fine-
mapped, it will be interesting to examine whether certain
types of molecular causes (coding versus regulatory) or
genes (encoding TFs, signalling molecules or others) are
more likely to result in trans-acting variation.

From the transcriptome to the proteome. The vast major-
ity of current studies use mRNA rather than protein
abundance as the measure of gene expression. However,
coding genes ultimately function through their protein
products. The experimental preference for mRNA is
because transcript levels can be measured more easily
than protein levels. Whereas eQTL studies can rely on
standardized methods that readily quantify most of the
transcripts in the genome'®, the few studies that have
examined proteome variation used a wide range of
assays, including commercial antibody kits for certain
blood proteins'®, 2D difference gel electrophoresis'®,
microwestern arrays'' and different types of mass spec-
trometry'>""'8, Many of these studies were limited in the
number of samples and/or proteins.

Two questions arise when comparing genetic influ-
ences on the transcriptome and the proteome. Does a
typical eQTL feed forward into variation in protein lev-
els? Conversely, are most pQTLs simply a reflection of
the underlying mRNA variation, or do they arise from
genetic influences on post-transcriptional mechanisms?
These questions are an important area of active research,
and a consistent picture has yet to emerge. The first direct
comparisons of eQTLs and pQTLs obtained by mass
spectrometry in model organisms®”'*!2* suggested that
most eQTLs did not seem to influence protein levels and,
conversely, that most pQTLs seemed to arise without
corresponding differences in mRNA abundance.

More recent proteome-wide studies reported better
agreement between eQTLs and pQTLs. For example, an
analysis of 22 diverse yeast strains found that most of the
identified eQTLs had concordant effects on protein lev-
els"'®, Studies in human cell lines have not only reported
substantial overlap between eQTLs and pQTLs but also
detected a number of protein-specific pQTLs without
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apparent effects on mRNA!'21217 The effects of eQTLs
seemed to be attenuated at the protein level relative to
their effects on mRNA levels''?. These studies used mod-
est numbers of individuals (<100) so that only local loci
with large effects could be examined. Some of the ‘miss-
ing’ eQTLs or pQTLs might therefore have been due to
low statistical power.

To overcome the limitation of sample size, a novel
experimental design was recently introduced in yeast.
The approach allows the detection of distant and local
pQTLs by comparing the genetic make-up of pools of
single cells with very high protein levels to those with
very low protein levels from populations of hundreds of
thousands of genetically different cells'?"'*2. Both studies
showed that more than half of the known distant eQTLs
that previously seemed to be mRNA-specific do in fact
have concordant pQTLs. Importantly, the high detec-
tion power also revealed that a typical protein is affected
by several times more distant pQTLs than seen before.
It remains to be seen whether the many newly discov-
ered pQTLs only arise at the protein level or whether
they reflect eQTLs with small effects that have not been
detected so far.

Protein translation may provide a plausible target for
sequence variants that influence protein, but not mRNA,
levels!?*2*, However, recent studies that used ribosome
profiling'® in yeast'?*'*” and in humans''? found strong
concordance between eQTLs and ribosome occupancy
QTLs, suggesting that protein-specific genetic effects are
likely to act beyond the stage of translation.

Lessons from model organisms

Testing causality of human variants. Model organisms
can provide insights into the consequences of sequence
variants that are suspected to be important in human
disease. For instance, it is possible to engineer the
genome and observe the effects of a given sequence vari-
ant on the whole organism rather than on a molecular or
cellular trait. A regulatory element upstream of the MYC
oncogene (which encodes a TF), for example, contains a
SNP that is associated with cancer in humans. The SNP
alleles lead to differential expression of MYC'®, but the
association between differential expression of MYC
and cancer was inconclusive. To test this, transgenic
mice were generated in which the mouse orthologue
of the SNP-containing cis-regulatory element (CRE)
was deleted'?. Ablation of the CRE resulted in mod-
estly reduced Myc expression levels. Crucially, the CRE-
deleted mice were also more resistant to tumorigenesis.
However, although this work shows that the CRE is an
important determinant of cancer risk, it does not prove
that the SNP within the element contributes to this risk
through gene expression. To formally achieve this, it
would be necessary to generate transgenic mice that
differ in the SNP alleles.

The Myc study in mice was facilitated by the fact that
the orthologous CRE actually exists in mice, in spite
of the fact that individual regulatory elements turn over
rapidly in mammalian evolution'. Many other human
CREs would have to be inserted into the mouse genome
in order to study their sequence variation. For example,

transgenic mice were created that carried a human CRE
that is not present in mice and that regulates the KIT
ligand (Kitl) gene'®'. The mice were engineered to carry
either of the alleles of a human SNP inside the CRE.
The SNP was suspected to contribute to blond hair in
humans. The two CRE alleles drove differential expres-
sion of Kitl in the skin and also resulted in a difference
in mouse coat colour, suggesting that this variant may
influence human physical appearance through altered
gene regulation.

Genetic associations shared between species. The power-
ful mapping panels in model organisms are designed to
maximize statistical power to detect genetic associations
from sets of defined genetic backgrounds. The panels
can be used to identify novel links between sequence
variants, expression and disease®. Although the indi-
vidual causal DNA variants are most probably not the
same as those in humans, the same genes, pathways and
networks may nevertheless harbour important genetic
variation in several species. For example, eQTL maps
from a panel of genetically heterogeneous rats revealed
a network of immune-related genes® centred on the
TF-encoding gene Irf7. In turn, the expression of Irf/
is influenced in trans by a cis-acting eQTL for the Ebi2
gene. Remarkably, an expression network with a similar
structure to that in rats was also found in human mono-
cytes®. As in rats, the human network was also influ-
enced in trans by a cis-eQTL for EBI2. One of the human
EBI2 cis-eQTL SNPs was found to be associated with the
autoimmune disease type I diabetes, an association that
had been missed previously.

Conceptual insights into causality. In addition to appli-
cations with direct relevance for human disease, model
organisms can provide powerful conceptual insights into
the relationship between regulatory variation and organ-
ismal traits. Genetic tools that allow precise genome
engineering and experimental control of gene expres-
sion make yeast an especially suitable organism for such
studies. These advantages allowed the first identification
of a trans-acting eQTL that causes trait variation through
expression changes. The protein encoded by the AMNI
gene differs between a common laboratory budding
yeast strain and other strains at two amino acids®. The
Amnl protein is a negative regulator of ACE2, which
encodes a TF'*, In turn, Ace2 activates CTSI (REF. 133),
which encodes chitinase, an enzyme required for cell
separation'. The laboratory strain allele of Amn1 fails
to repress ACE2, resulting in upregulation of CTSI and
separation between mother and daughter cells. In other
strains, CTSI expression is lower, and budding cells stick
together to result in ‘clumpy’ growth®.

Recent work in yeast has provided further insights
into how genetic effects on expression shape pheno-
types (FIG. 2). Rest et al.'** showed that effects on fitness
of the expression level of the essential gene LCB2 are
nonlinear and depend on both the environment and the
genetic background (FIG. 2A). They replaced the native
LCB2 promoter with a promoter system that can be used
to finely control LCB2 expression and found that the
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reduction in expression level compared with the wild-
type level led to a sharp decrease in fitness. By contrast,
overexpression had only minor fitness effects. Growth
in the presence of osmotic stress preserved the shape of
the expression-fitness curve but shifted it such that
higher expression of LCB2 was required for a given fit-
ness level. Wild yeast strains had lower expression levels
of LCB2 than those seen in the laboratory strain, sug-
gesting that the expression—fitness curve is also shifted
by different genetic backgrounds'®.

Yeast eQTL hot spots often overlap with loci that
influence growth rates. This observation could arise
when gene expression differences cause growth dif-
ferences or vice versa, as well as when expression and
growth do not affect each other but are both caused by
the same locus or by different loci in close proximity
(FIG. 20). To distinguish among these scenarios, Gagneur
et al."”* mapped yeast eQTLs in five environmental con-
ditions and compared the eQTLs to loci that influence
growth in the respective conditions. Whenever a QTL
affected growth in a given condition, this locus also
affected the expression of multiple genes in that condi-
tion; that is, the locus was an eQTL hot spot. However,
some QTLs affected growth in only a few conditions but
remained eQTL hot spots even in conditions in which
they did not affect growth. When a growth QTL was
detected in several conditions, it was also an eQTL for
some genes in all of these conditions but for other genes
in only some of the conditions. The authors used a sta-
tistical model to show that those genes influenced by
a hot spot irrespective of growth condition were more
likely to cause growth differences than genes with
condition-dependent eQTLs".

Two studies used allelic engineering to show that four
nucleotide changes in three TFs together explain nearly
all of the variation in sporulation efficiency between
two yeast isolates'*”'* (FIC. 2B). By contrast, these same
four variants accounted for much less variation in gene
expression at the time point at which cells switch to the
meiotic state'””. The effects of these SNPs on gene expres-
sion had different magnitudes and different degrees of
additive versus epistatic contributions compared with
those on sporulation, suggesting that there is no simple
direct relationship between the effects of these specific
nucleotide variants on gene expression and on the cel-
lular phenotype. Together, these yeast studies show that
the relationship between gene expression variation and
higher-order traits can be highly complex, and they pro-
vide context for interpreting links between eQTLs and
disease in humans.

The role of eQTLs in human disease

A region identified by GWASs as associated with dis-
ease typically contains more than one gene and multi-
ple sequence variants that are in linkage disequilibrium
with each other. The next task is to find the causal genes
and sequence variants, and to understand how they
affect the disease. Although variants that alter coding
sequences are obvious candidates, most human GWAS
hits fall far from coding regions of genes and are over-
represented in regulatory elements**'**. Therefore, most
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causal variants probably influence traits by altering gene
expression. A GWAS hit typically contains multiple
regulatory elements, and these elements can influence
genes at some distance'®. It is therefore not easy to pin-
point the causal variants and to discern the genes that
they affect. eQTLs can provide the crucial link between
the variants in a GWAS region and the biological
processes they affect.

Bigger data, better maps. When a GWAS hit is also an
eQTL for a given gene, this provides the hypothesis that
the expression of this gene influences the disease. It is
now firmly established that GWAS hits for common
diseases are enriched for eQTLs, and vice versa. This
enrichment was first noted in a comparison of asso-
ciations for traits such as body mass index to eQTLs in
adipose tissues and blood', and was later observed
in comparisons of GWAS results and eQTLs mapped in
immortalized cell lines""'*2. There have since been many
eQTL studies in tissues with relevance for a given dis-
ease, providing numerous cases of GWAS-eQTL pairs
that suggest plausible causal mechanisms (TABLE 1).

To maximize the chance of finding GWAS-eQTL
links, eQTLs need to be mapped in additional tis-
sues'*!*, For example, Kapoor et al.'* identified a
causal regulatory variant that influences heart function
by altering an enhancer in heart tissue; this variant had
been missed in previous eQTL studies of different tis-
sues. Reference panels of eQTLs identified in multiple
human tissues'*® will be useful in this regard, as are
current efforts to map eQTLs in purified primary indi-
vidual cell types (such as certain subtypes of immune
cellg66-6873.74147-151) rather than in tissues that contain
a mixture of cell types (such as whole blood). Such
analyses of purified cell types are especially important
because eQTL architectures can change dynamically
during developmental differentiation of related cell
types, as demonstrated in the haematopoietic cell line-
age in mice'*>'**. For tissues that are difficult to obtain
from primary sources, induced pluripotent stem cells
(iPSCs)™™*, which can be differentiated into various
cell types, provide a promising alternative. As a crucial
prerequisite for using iPSCs, it was recently shown that
gene expression differences between iPSCs derived from
several donors are larger than the technical variation
induced by cellular reprogramming and cell culture'®*.

Even in tissues and cell types that have been stud-
ied, the currently available maps are incomplete. This is
partly because eQTL architectures can change consider-
ably in cells exposed to different growth conditions, as
initially demonstrated in yeast>*'%'%. A rapidly growing
set of studies is mapping eQTLs in human cells exposed
to physiologically relevant stimuli. So far, the main
focus of this work is on comparing eQTLs in unstimu-
lated immune cells®6873147-149151 to eQTLs that are only
seen after these cells have been activated by triggering
the immune response'®®”7#!15¢156157 Tmmune cell activa-
tion can reveal large numbers of eQTLs that are hidden
in resting cells'®. Stimulus-dependent eQTLs in whole
blood also help to explain individual differences in the
transcriptional response to vaccination'”.

NATURE REVIEWS ‘ GENETICS

ADVANCE ONLINE PUBLICATION | 9

© 2015 Macmillan Publishers Limited. All rights reserved



deplanck
Highlight

deplanck
Highlight

deplanck
Highlight


REVIEWS

A 5 105 B 100+
= std.  os B Additive effects
b B Interaction effects
2 1.00 o
2 g
3 £ 75
E 095 8s
8- c o
> 2 £
"6 o8
= 0.90 2 S 50+
2 Sl
2 65
¢ £
'S 0.85+ o o
@ g3 25
2 £3
ﬁ — Standard media (std.)
= 0.807 === Osmotic stress media (0.s.)
=
T T T T T T 1 0
—4 -2 1 2 4 8 16 Sporulation
Fold change in LCB2 expression Genes affected by the sporulation quantitative trait nucleotides
Ca Genotype Gene expression Growth rate
. .GACEATTG. . @ @ “» Mediating gene
/ Td . 99
- -GACCTTG. . - O Non-mediating gene
. .GACHATTG. . \ g associated with genotype
° e -,g O Gene not associated
E with genotype
Environment z > Causal link
% ( J ( _ @ / Time
Association strength with growth (P value)
10* 102 1 1072 10
Yallele Sallele
Figure 2 | Key insights into the causal relationship Cb beneficial beneficial
between eQTLs and organismal traits provided by Glucose
recent studies in yeast. A |Fitness consequences of 600
experimentally altered expression of the LCB2 gene i
are shown'®. Note that even low levels of upregulation 0 MW@W
or downregulation can have drastically different | I TS =L wan — L I : :
consequences on fitness, depending on the baseline AMN1 MKT1
expression level and the environment. B | Genetic effects Low iron
on gene expression caused by four well-characterized 8(? A
S|r?g!e nut?leotlfd? polymorp isms (SNPs) that had been . e T .
originally identified through their effects on yeast 2 ]
sporulation efficiency®’. The genes differ from each < AMNT o
other in the degree to which their expression is 2 .
influenced by the four SNPs and in the relative £ 1004 Rapamycin
importance of epistatic effects compared with additive S |
effects. For comparison, the effects of the four SNPs on § o)
sporulation efficiency are shown in the bar furthest to S ol 1L ‘ I‘l ‘ ‘ ‘ ] I !
the right. The impact of these SNPs on the organismal g CHRX HAP1 MKT1
trait (sporulation) cannot be simply explained by their £ Ethanol
effect on the expression of any one gene. C | Gagneur z 4007
et al.’*® studied the possible flows of causality from DNA ]
variation between two yeast strains (Y and S) to gene o'l T i i ‘ T i
expression and yeast growth rate (part Ca). The T T T T I
. s . MKT1
correspondence of expression quantitative trait locus
(eQTL) hot spots (black peaks) and growth QTLs (coloured 3,000 Maltose
bars) varies substantially among different environments J
(part Cb). Part A reproduced from Rest, J. S. et al. 0
Nonlinear fitness consequences of variation in expression | Ll I‘ l Ll ! Lul L ‘ ‘ | ‘ ! |
level of a eukaryotic gene. Mol. Biol. Evol. (2013) 30(2), 1 2 4 56 7 8 9 10 11 12 13 14 15 16
CHRV MAL13 MKT1

448-456, by permission of Oxford University Press.
Parts B and C from REF. 137 and REF. 136, respectively.

Genome position (chromosome number)

10 ADVANCE ONLINE PUBLICATION

www.nature.com/reviews/genetics

© 2015 Macmillan Publishers Limited. All rights reserved



Many eQTLs are missed owing to low statisti-
cal power in small samples. As sample sizes increase
towards thousands of individuals, eQTL catalogues
have grown remarkably. Recent studies of a thousand
or more individuals report eQTLs for the majority of
genes expressed in a given tissue**>”°. Many of these
eQTLs have small effects that were beyond the detec-
tion limit of the earlier, smaller panels, and there are
likely to be thousands more eQTLs beyond our current
statistical reach.

Analytical challenges and opportunities. A common
approach for prioritizing likely causal variants among
the variants that are linked to a genomic region impli-
cated by GWASs is to focus on variants that are eQTLs
in a published data set (TABLE 1) and on variants that are
located in functional elements such as promoters or
enhancers''%, Similar to eQTLs, maps of such regu-
latory features are available in a growing number of tis-
sues and cell types®®'’. As both eQTL catalogues and
maps of regulatory features continue to grow, more
and more eQTLs will be found to colocalize with regu-
latory regions, requiring decisions on which overlaps
are the most informative. Furthermore, GWAS signals
would ideally be compared to eQTLs and regulatory
features obtained from the ‘causal cell type in which
the given disease emerges. However, for many diseases
and traits it is not a priori clear which cell type is the
most relevant.

Recently, integrative Bayesian methods have been
developed to identify sets of functional sequence anno-
tations (for example, from sets of regulatory elements
from many different cell lines) that are the most relevant
for the given trait in an unbiased manner'**'*'%, These
methods complement similar approaches to fine-map
the causal sites within eQTLs themselves*”10516%170 o
jointly analyse eQTLs across different tissues'”" and
to predict expression levels from genotypes'”>. When
annotations inferred to be important for the trait
come from a certain tissue, this suggests that the tis-
sue is biologically important for the trait. Not only can
these links support known connections (for example,
between high-density lipoprotein (HDL) levels and
regulatory elements in liver cells'**), but they can also
generate new hypotheses. For example, GWAS hits for
platelet volume were enriched in regulatory elements
in the spleen, which is not obviously connected to this
trait'®. In turn, the annotations inferred to be the most
important can then be used to select the most promising
variants for future study.

The approaches show promise in fine-mapping indi-
vidual GWAS regions'® but often still result in sets of
multiple potentially causal variants. A natural extension
of these methods is to also consider whether each vari-
ant is an eQTL'*'%, For example, in one analysis eQTLs
were found to be the most important source of infor-
mation when prioritizing among GWAS hits for auto-
immune disorders'®. Further information can be gained
by including published functional knowledge about the
gene that the eQTL regulates and by studying whether it
is known to have functions related to the disease'”. This

REVIEWS

type of information will be particularly useful when a
given eQTL influences the expression of multiple genes,
perhaps in different tissues. Other Bayesian approaches
formally test whether an eQTL and a GWAS hit are due
to the same causal variant rather than to two closely
linked variants'”, and may gain predictive power by
considering functional annotations. As the diverse
genomic data sets continue to grow, rigorous integration
across them will be crucial.

Bridges across the causality gap. Several exam-
ples of causal links between human regulatory
variants and disease have been uncovered in recent
years* 1011035175176 (see REF. 177 for a review of earlier
work). A prominent example is a common SNP at
1p13, a locus associated with the risk of myocardial
infarction'® (FIC. 3). Remarkably, although the SNP
is located in the 3’ untranslated region of a gene, its
causal effect on infarction is not mediated through this
gene. Instead, the minor SNP allele, which is associ-
ated with reduced risk, creates a binding site for a TF
that is preferentially expressed in the liver'®. Asa con-
sequence, the sortilin 1 (SORT1I) gene, which is ~40 kb
away and separated from the causal SNP by 2 addi-
tional genes, is upregulated specifically in the liver.
Knockdown and overexpression studies in mouse liver
confirmed that higher expression of the sortilin pro-
tein results in lower levels of low-density lipoprotein
cholesterol (LDL-C). In turn, LDL-C is a well-known
risk factor for myocardial infarction, providing the
final link in the causal connection between this eQTL
and a major human disease.

A second case involves SNPs associated with obe-
sity that are located within introns of the fat mass and
obesity-associated (FTO) gene'’. As knockout of Fto
results in leaner mice'”, it had been suspected (but
not demonstrated) that the causal variants might act
through expression levels of FTO. However, recent
work showed that the genomic region containing the
variants in the obesity-associated region is in physi-
cal contact with the iroquois homeobox 3 (IRX3)
gene, which is located at a distance of ~500kb from
the variants'®. SNPs in the obesity-associated region
also showed association with the expression of IRX3
in human cerebellum, albeit with only nominal sig-
nificance. Phenotypes of mouse knockout models of
Irx3 are consistent with a causal role of IRX3 in obesity.
More work will be needed to identify the precise causal
variant or variants within the obesity-associated region
and to determine whether their effects on obesity are
mediated primarily by IRX3 expression variation.

Notably, these examples both involve SNPs in regu-
latory sequences that are located some distance away
from the genes they influence. Such long-range regula-
tory interactions are usually mediated by physical con-
tact between the regulatory DNA and the regulated
gene. Targeted'®"'* and global'®* methods for mapping
the physical interactions of GWAS hits will be useful to
systematically dissect the regulatory consequences of
disease-associated variants, as recently demonstrated
for several breast cancer risk loci'®.
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Conclusions and perspectives

The work we have reviewed here demonstrates that
eQTLs have important roles in influencing downstream
traits ranging from yeast growth and fitness to human
disease. The connections along the causal chain from
DNA variant to altered expression and trait variation can
be surprisingly complex. Dissection of the functional
impact of regulatory variation will continue to require
careful experimental follow-up work. The existing and

rapidly growing catalogues of eQTLs will enable more
precise targeting of these efforts. Large sample sizes will
be crucial to ensure that no relevant eQTLs are missed,
especially the more elusive trans-acting variants. To
ensure that the relevant biology is captured, eQTL maps
need to be constructed in a wide range of tissues and cell
types, and under a variety of physiologically important
conditions. When tissues are difficult to obtain or when
they represent complex mixtures of cells (such as brain
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Figure 3| An example of a full chain of causality in humans. a|The
minor allele of a non-coding single-nucleotide polymorphism (SNP) in
the 3" untranslated region (3'UTR) of the CELSR2 (cadherin, EGF LAG
seven-pass G-type receptor 2) gene creates a transcription factor binding
site for CCAAT/enhancer-binding protein (C/EBP), to which the major
allele does not bind'®. Binding of C/EBP at this site leads to increased
expression of the sortilin 1 (SORT1) gene in liver cells. b | In mice,
overexpression of Sort1 in the liver reduces low-density lipoprotein
cholesterol (LDL-C) levels (calculated using fractions 10-26). ¢ | Small
interfering RNA (siRNA)-mediated knockdown of Sort1 increases LDL-C

T T
10 13 16 19 22 25 28 3
Fraction

T
4 7 1 34 37 40 43 46

levels in mice. As LDL-C, in turn, is a known risk factor for myocardial
infarction, this work provides a complete causal path from a non-coding
variant to altered risk for a major human disease. SORT1 is separated
from the causal SNP by two additional genes, and the causal effect on
LDL-Cis not mediated through CELSRZ2, although the causal SNP is in the
3’UTR of this gene. Chr1, chromosome 1; MYBPHL, myosin-binding
protein H-like; PSMA5, proteasome (prosome, macropain) subunit, alpha
type, 5; PSRC1, proline/serine-rich coiled-coil 1; SARS, seryl-tRNA
synthetase; SYPL2, synaptophysin-like 2. Figure adapted from REF. 100,
Nature Publishing Group.
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tissues), differentiated iPSCs'®’ provide promising alter-
natives. Methods to study expression patterns in single
cells obtained directly from dissociated complex tis-
sues'®®1% might also be useful in this regard. Prioritizing
putative causal links between DNA variation, expres-
sion and phenotypes will require further development
of sophisticated data integration techniques.
Furthermore, in addition to studying the downstream
effects of eQTLs, it will be equally important to more
completely explore the genetic and molecular architec-
ture of gene expression variation. Are expression levels
themselves as polygenic as many disease traits, or do they
have simpler architectures? How varied are the genetic
architectures of the thousands of genes in a genome'*?
Does the importance of epistatic variance differ between
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gene expression®®"”'1** and higher-order traits'¥>'%?
How plastic are gene expression architectures in dif-
ferent environments®>¢77+1901921972 A major challenge is
the identification of large catalogues of causal variants
that underlie eQTLs. Rapid advances in genome editing
— for example, using the CRISPR-Cas9 (clustered reg-
ularly interspaced short palindromic repeat-CRISPR-
associated protein 9) system'?*'* — will greatly speed
up our ability to experimentally validate and investigate
the effects of putative causative variants. Ultimately, a
complete genetic and molecular understanding of how
genetic variation shapes gene expression and cell biol-
ogy will be useful for improving predictive models of
the consequences of new mutations and for personalized
genomic medicine.
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